
MARYLAND
N COLLEGE PARK CAMPUS

I THE PROBLEM OF MODELING THE ELASTOMECHANICS IN ENGINEERING

Ivo Babuka

Institute for Physical Science and Technology
University of Maryland

College Park, MD 20742 USA

BN-1108 J .E C, T EL E :

MAR0 6 1991.
B

February 1990

Approved for public 1

INSTITUTE VOR PldYSICAL SCIENCE
AND T{ -CINOLOCY

Lv



Lnci ji)

SECURITY CLASSIFICATION OF THIS PAGE (lPI Dols BgdWsOd0

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLE7TNG FORM
1. REPORT NUMBER 3. GOVT ACCEUION NO. S. RECIPIENT'S CATALOG NUMBER
Technical Note BN-1108 T

4. TITLE (mnd Subtltle) 1. TYPE OF REPORT a PERIOD COVERED

Final life cf contract
The Problem of Modeling the Elastomechanics in

Engineering 6. PERFORMING ORG. REPORT NUMBER

7. AU TNOR() IS. CONTRACT OR GRANT NUMBER(a)
ONR/N00014-89-J-1030

Ivo Babuska NSF/CCR-88-20279

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Institute for Physical Science and Technology

University of Maryland
College Park, MD 20742

II. CONTRO.LIN1 37F7:CZ NAME AND ADDRESS 12. REPORT DATE

Pepartment of the Navy February 1990
Office of Naval Research IS. NUMBER OF PAGES

Arlington, VA 22217 43
14. MONITORING AGENCY NAME A ADDRESS(l dilferent from Controlling Office) IS. SECURITY CLASS. (of lie report)

ISO. oECLASSI FICATION/DOWN GRADING
SCHEDULE

I. DISTRIBUTION STATEMENT (of thl Repon)

Approved for public release: distribution unlimited

17. DISTRIBUTION STATEMENT (of the ebstract entered In Black 30, If different bow Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reverse aid* If ntcoeay mnd Ide etify by block hamber)

20. ABSTRACT (Continue decrese side It necessary mod Identify by block mmbe in)

The paper describes the major aspects of modelling engineering problems
of elastomechanics. It shows various aspects and results on a seL of
illustrative examples of 2 and 3 dimensional problems.

DD I ,O1 1473 EDITION Oi I NOV Is Is O@SOLETE
S/N 0102- L- 014-6601 SECURITY CLASSIFICATION OF THIS PAGE (When Dt Untee



The Problem of Modeling the Elastomechanics in Engineering

Ivo Babuska
Institute for Physical Science and Technology

University of Maryland
College Park, MD 20742 USA

Partially supported by the Office of Naval Research under Grant

N0C0.4-89-J-1030, and by the National Science Foundation under Grant
CCR-88-20279.

1



Abstract

The paper describes the major aspects of modeling engineering problems

of elastomechanics. It shows various aspects and results on a set of

illustrative examples of 2 and 3 dimensional problems.
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1. Introduction

The aim of computational analysis is to describe and reliably predict

physical phenomena of interest. In the engineering sciences the primary aim

is usually to design tools which operate SAFELY under certain (mechanical)

conditions, in certain environments and for a certain period of time.

By computational analysis, ONLY mathematical problems and NOT the reality

can be analyzed. The mathematical problem TRANSFORMS given input data into

information which is of direct interest and does not add anything new (in

fact its loses some Information).

The aim of computation is to reliably obtain certain information in the

range of an admissible tolerance so that it Is not unduly influenced by the

computational procedure used.

The formulation of the mathematical problem is usually the most crucial

part of the analysis. Because of the complexity of engineering analysis and

uncertainties in the available information, the formulation of the mathe-

matical problem is often directly or indirectly stipulated in the design

codes and often (af least in parts) it is also influenced by the particular

(company) engineering practices. These codes change with time and express the

experiences with the technology used. As a typical example we mention the

design code (USAF-MIL-A-83444) used in aircraft components. It is based on

the principle of "non-inspectable slow crack growth" which should meet the

following demands

a) the life of the component should exceed two design times

b) the residual strenath of th eompcnent shotld, aftter being in seivic

two design life time, exceed maximal load acting on the component by a factor

of, say, 9/8.
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These or similar principles and other considerations (for example, un-

certainties in the input information) lead to the precise formulation of the

mathematical problem and defining the data which have to be obtained as well

as to the admissible accuracy with which they have to be determined.

The basic flow chart of an engineering computaLional analysis is shown

in Fig. 1.

1. PHYSICAL PROBLEM
AND CRITERIA

.1
2. BASIC MATHEMATICAL

PROBLEM

I
3. SIMPLIFIED MATHEMATICAL

PROBLEM

AND

ANALYSIS OF THE ERRORS
CAUSED BY THE SIMPLIFICATION

1
4. NUMERICAL TREATMENT

AND

ANALYSIS OF THE ERRORS
CAUSED BY NUMERICAL
TREATMENT

5 PHYSICAL CONCLUSIONS
OR ENGINEERING DECISION

Fig. 1. The flow chart of computational analysis.
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Usually in practice loops are present in the flow chart.

The "reality" is associated with (l). The engineering analysis of the

problem, the aims of the analysis, and the assessement of the quality of the

available data. etc. then yield the precisely formulated mathematical problem

(model) (2). This model is to be understood as a "higher" model which is

identified with reality. Nevertheless we solve usually only a simplified

problem (3) and reliability of Its solution is judged typically in comparison

with (2). In (4) we solve numerically problem (3) and the reliability and

the error of the numerical solution is related to the (exact) solution of (3)

(and not (2) or (I)).

Let us underline that basic and simplified mathematical problem has to

have reasonable mathematical properties, for example the existence of a

solution. The existence of the solution of the "real" problem does not

necessarily mean that the solution of the mathematical problem exists too.

This is because of the simplification which enters into the formulation of the

mathematical problem. Also, if the numerical algorithm provides numerical

results (possibly reasonable looking), it does not mean that the solution of

the mathematical problem necessarily exists, (because convergence has not to

occur etc.) Obviously, theoretical analysis of the mathematical problem and

comparison of its properties with the expected properties of the reality is

essential part of the reliability of the model.

In all stages we have to relate the numerically obtained solution to the

exact solution of a mathematical problem. The agreement with reality, for

example with experiments, is then related solely to the formulation of the

basic (or possibly simplified) problem. It is essential that the errors of

numerical solutions are completely under control so that the exact solution of

the mathematical problem is essentially achieved and a possible disagreement
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with experiments is related ONLY to the mathematical problem itself.

In this paper we will show various concrete examples to illustrate the

basic ideas and results. All the computations in this paper has been made by

the h-p version of the finite element method by the code PROBE (McNeil

Schwendler-Noetic) and STRIPE (Aeronautical Institute of Sweden). These codes

have various error checks so that the numerical results presented here can be

assumed to be exact in the range of accuracy needed for the model conclusions.

2) Problem of the cantilever beam

Consider a problem of a simply supported cantilever beam shown in

Fig.2. la

B

a d

A
4"- DETAIL

B

b G

A I)
L - -- a-

Fig.2.1 The simply supported cantilever beam

Let the basic mathematical problem be the problem of two dimensional linear

elasticity (plane strain) for Isotropic homogeneous material. The basic

unknowns, the displacement u,v, satisfy the usual Lam6-Navier equations of

elasticity. As the boundary conditions shown in the Fig.2.ia. we impose on

BC: Ty = p, Tx = 0, on AB, u = v = 0, on CD, DE, FA: Tx = Ty = 0 and on

fF(where & 4 d) Tx = 0, v = b(x-L') where b is such that I T (x-L')dx = 0.

6



By T respect to T we denoted the traction7. The problem is a modely y

of the simply supported cantilever beam. The (weak) solution which has finite

energy exists and is uniquely determined.

Let us now consider the simplified problem when A = 0 and when v = 0

at the point G (see Fig.2.1b) Is pres,.:ibed instead of the more complicated

boundary condition of the basic problem. Then it is possible to show that the

unique (weak) solution of the simplified problem is the same as the one when

the condition v = 0 at G is not present. We see that the solution of the

simplified problem is unacceptable. The reason for it is that the displace-

ment under concentrated load Is infinite (the Bousinesque solution). Although

the solutions of Lhe basic problem converges to the simplified one as A-4O,

the convergence is very slow and so it is Inadmissible to consider this

limiting case instead of the original one.

We remark that the point support Is standardly used in fialte element

computations, i.e. the simplified problem Is often numerically solved. Hence

the error of the finite element solution is very large because for a mesh not

extremely refined the cantilever beam solution without support, i.e. the exact

solution is not obtained. It is possible to show that the finite element

solution converges to the solution for the beam without support as the mesh

size converges to zero. Hence the solution obtained in practice is mesh

dependent. This is of course completely undesirable. It is necessary to

mention that the finite element meshes used in practice (if not adaptively

constructed) are crude and the FE solution does not show the mentioned effect.

For some numerical analysis and computation we refer to [3].
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3) The problem of the built in plate (beam).

Let us consider the classical problem of an infinite plate problem (in 2

dimension) which can be formulated as two dimensional (plane strain) problem

in the coordinates xy. The scheme of a concrete example is shown in the

Fig.3.1 where we assume built in (clamped) boundary conditions.

AREA B AREA A 1.0
t t t t t { tt4* --

Fig,3.1 The scheme of the considered plate.

We define once more the basic problem as the two dimensional elasticity

problem with P = 0.3 (where we denoted by u the "Poisson ratio") and with

the modulus of elasticity E = 3.10 7 The built-in (clamped) boundary

condition is modeled by u = v = O

The solution e::ists, and is unique. Assume that the aim of the analysis

are the stresses in the areas A and B shown In Fig. 3,1. Let us further

distinguish 2 cases for the data of interest

a) the bending moment and the shear force

b) maximal stresses and the stress distribution through a cross section.

3.1. The problem of the boundary conditions.

It is obvious that the modeling of the clamped end Is an idealization.

In reality the support is obviously more complex. Hence we have an

uncertainty in the formulation of the boundary condition and the problem

shown in Fig.3.1 can be une-rstood as the simplified one. To analyze this
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problem consider a few configurations which could be expected to lead the same

simplified p-oblem. They are shown in Fig. 3.2.

0

0 0
0'

0 b" T

40 1010

1.0

o .j.0 I

f/i i i - 41-j T

Fig. 3.2 The scheme of various boundary conditions.

In the case (e) we model the clampd end as the elastically built-in end.

The boudary corditions are then

T = -cvx

T = -cw
y

0where c 10

The case (f) depicts a still further simplified problem based on the

Klrchhoff bea theory (strength of material approach). In this case the

value of the bending moment in the center is

Lo 1.0I0

(3.1) M =1 -10
24 6
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Assume first that we are interested in the maximal stiess o in thex

center of the beam (area A in Fig.3.1). We get then in the case f: 0 =

100.

We let the stress - = 100.23 in the case d) (i.e. the case shownx

in Fig.3.1) be the "exact" solution to which we will compare all others.

Table 3.1 shows the results.

Table 3.1. The stresses at the c.nter for various models.

Case T Errorx

a 108.46 8.2%

b 109,76 9.5%

c 108.27 8.0%

d 100.23 0%

e 120.17 19.9%

f 100.00 0.2%

Table 3.1 shows that simplification of either problem a,b,c leads to the error

about 10% while the simplification of the case d by Kirchhoff hypotheses

leads to error of 0.2%.

We have considered the special case for the ratio d/1. - 0 If d--)0
20

(for fixed L), the relative difference between the cases a,b,c, and d goes

to zero. We have then

In the case a):

ada d I

-I-
Frwcneltd(3.2) e Cd+higher order terms.

1For d/L - we can neglect in (3.2) the higher order terms. Table 3.2
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shows that in fact ad (d) = c d with high accuracy.

Table 3.2 . The relative error a d(d) of the case a with respect
to the case d

d/L ad(d)

1/20 8.2%

1/50 3.2%

Let us now consider simplification of the problem d to the problem f.

We have then

0,d _ 0f

df(d) - x xd 2 + higher order terms.

We see that the error of the modeling of the boundary conditions

is much more significant than the error of the simplification leading to the

Kirchhoff (strength of material) solution.

So far we have computed the maximum of the stress a- in the area A.x

Here the stress is very accurately linear through the cross section and hence

when the interest is in the moments, the relative errors mentioned in the

table 3.1 and 3.2 hold too.

We reported the stress In the area A and have seen that the sensitivity

to the boundary conditions is of order 10%.

In the area B the differences in the stresses are much larger. The

stresses are singular (the singular behavior of the solution will be discussed

in the next section). Here we report in the Fig.3.3 a,b,c, the stress In the

cross section in the distance x = d/100 from the boundary. We clearly see

that the differences between the mentioned cases are significant. On the
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other hand let us be interested in the (bending) moment and shear force. Then

using equilibrium condition we easily see Lhat the differences in the moments

are the same as in the center of the beam i.e. as in the area A. Hence

different aims lead to very different sensitivities to the uncertainties in

input data.

400

350 F - - -
I I STRESS O47 . ..%

I d
300 -- AT 1-d/1O0 --- d

220'

00.05 0.10 015 0.20 Q25 0.30 O:55 0,40 0.45 0.50

1201 !

110- II
00 -n -
90 - STRESS

SC) AT W.d/IO0 -- -d

,oo '

70 --- /.

60 - - ..- - - -
50~

40-_ . - "

30

'0-
C -

0 0 0.15 0.20 025 0.30 035 040 045 050
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,ooC I /oo--
80 -

AT -dd/0i
70 de I

60 -- f

4C -- / -

0 -- - - -" el20-- '- -' -... -
-I0 -- " " -
0

o 005 0.10 0.15 Q20 025 0.30 0.35 0.40 0.45 0.50

Fig. 3.3 The stresses in the area B.

4) The singularity problem and zooming principles.

4.1 The problem in 2 dimensions.

Let us consider the linear elasticity problem on a polygon domain fa

with the boundary consisting of straight segments r , i = 1,..., n and

vertices AVI = 1,..., n. By w we denote the internal angles. Let us

assume that we are dealing with a homogeneous Isotropic material and that on

every segment rI are boundary conditions with analytic data prescribed and

that no volume forces are present. Then the solution is analytic on 12\UA I .

The solution is singular In the neighborhood of the vertices. Let

r,,ri+ 1 be the segments meeting in the vertex Ai . Assume for simplicity

that the boundary condition (of standard type) are homogeneous on rlr+1,

13



F, (x, y)

r
A. )
Ai e

Fig.4.1 Scheme of the angle

Then the solution of the problem in the neighborhood at AI has the form

(4.1) v(xy) = cIr f + smoother terms

where (r,O) are the polar coordinates with the origin in Ai as shown in

Flg.4.1. Ai are real a complex and Re A i+> ReA > 0 and f and 0 are

smooth functions in 6. If A is complex then we use real and imaginary

parts separately. Coefficients AI and gi 0i are given by the geometry (the

angle wI), the type of boundary condition on r i , r1+ and the material

properties (in our case Poisson ratio). They are independent of the solution.

The coefficients cI depend globally on the solution (except for special

cases). The structure of the solution is well known in the general case, for

straight and curved segments r , and for general (linear) materials. We will

not go into details. Here we refer instead to [14], [151, [16], [22J. In

(21] a general approach (and a computer code) for computation of AV, 'it 01

for anisotropic and nonhomogeneous materials is given. Very often the

coefficients cI called stress intensity factors (together with AV, ol @i)

are the main aims of the analysis (in 2 and 3 dimensional settings). This is,

for example, in the case of design based on the earlier mentioned design code

14



(USAF-MIL-A-83444). The stresses in the neighborhood of A are unbounded

when ReAI < 1 provided that c 1 *0.

Because in finite element computations the stresses are always finite,

the character of the computed stresses can be misleading. If A < I then

practically always (except in symmetric cases) c1 *0 although it can be

relatively small. Then the large stress can be confined to small area only

(we will see an illustration in a three dimensional problem in the next

section.) Reliable computational analysis always requires to compute these

stress intensity factors. (For methods of reliable computation of the

singular behavior around the corners see references [11, [251).

Let us now relate (4.1) to the zooming principle. To this end let

1 p E and
K K K

='W uP=K ii~

v(g,n)= v(., KV)

be the zoomed solution. Then we obviously have

(4.2) = c1 F1 (K) P { (
v(C,0) "I i- 01(9)

and hence functions pAii(a), pAii(e) are the parts of the zoomed solution

with the zooming parameter K. Here it was characteristic that the infinite

sector was invariant with respect to the zooming.

Let us consider now another case, namely the case shown in Fig. 4.2. We

can zoom (Fig. 4.2b) the solution at A (see Fig. 4.2a) and get the solution

in the form (4.1) (resp. (4.2)) in the same way as before. The other possi-

bility is to zoom the solution with respect to the parameter d as shown in

Fig. 4.2b. Then up to rigid body motion the first term In the zoomed solution

15



has the form

(4.3) d- M +T

Here M and T is the moment and shear force at the end of the beam. The

function @i' @' i = 1,2 are the functions defined on the domain shown In

Fig. 4.2b.

DETAIL a
/

/ 0 A
rA
A d

f DETAIL b
_LL

Fig.4.2. The solution on the zoomed domain.

Coefficient M and T are analogous to the stress intensity factors

introduced earlier. The zooming principles can be used in many cases when

the corner singularity interferes as In the case shown in Fig. 4.2. For more

details we refer to [6].

4.3. The problem in 3 dimensions

In 3 dimensions we will consider a polyhedron instead of a polygon and

the problem becomes more complex. Once more we will consider the case of

isotropic homogeneous maeterial. Along the edges the solution is singular in

the direction which is perpendicular to the edges and is smooth along the

16



edges. Assuming that the (straight) edge is along the axis z, the singular

terms are of the form

u(x,y,z) ( f Bi()

wvx,y,z) ci )

where (r,O,z) are the cylindrical coordinates. Functions i are

smooth in 9. There are, in contrast to the two dimensional case, two kinds

of singular function. For the first kind coefficients A and functions p

Oi are as in 2 dimensions and = 0 (they are sometimes called bending

singularities). In the second kind we have =i = 0 (and gi *0) (they

are sometimes called torsion singularities). For details we refer to [15],

[22]. The function c.(z) are the stress intensity functions which are smooth1

in z (except the neighborhood of the verticles).

In addition to the edge type singularity, we have a vertex singularity.

Here the singular terms have the form

u(x,yz) (i)
v(x,y,z) ~.= ciRA,(,
w(x,y,z) J I e,

where (R,0,E) are the spherical coordinates. Functions have

singular behavior in the neighborhood of ( s,8 s ) being the coordinates

of the edges. For details once more see (15], [22].

The coefficient A i  and functions i depend on the geometry,

boundary conditions and material properties but not on the solution. The

coefficients c I are the analog to the stress intensity factors and depend

(except special case) globally on the solution. The relation between A I

and A ( I ) governs the singular behavior of the edge intensity factor function

in the neighborhood of the vertex. The unboundedness of the stresses in the

17



neighborhood of the vertex take place when A (1) 1 provided the coefficient

c *0. Because of global dependence of cI on the solution, c *0

practically always (except possible in special case of symmetries). Neverthe-

less .1 can be small and large stresses can be confined to a small area.

Then the usual finite element solution could indicate completely wrong

behavior. Hence computation of ci is a necessity to obtain reliable results.

z

y- DISPLACEMENT
.O

" -DISPLA EME

y 2

'TAC"ION A REE
"FREE

40 .1 D

TRACTION FREE

Fig.4.3. The 3 dimensional domain

RAY 5

RAY 4

RAY 3 TORSION INTENSITY

FACTOR FUNCTION

A SENOING INTENSITY
FACTOR FUNCTION

Fig.4.4. Location of the rays
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Let us show now two typical examples. Fig.4.3 shows a three dimensional

domain wiLh imposed boundary conditions. Along the marked edge shown in Fig.

4.4 the stress intensity factor functions are present. In the neighborhood

of A solution has vertex type of singularity. In Fig. 4.4 we show the rays

where the stresses are depicted. The first two coefficients A i are given in

Fig. 4.5a for v = 0.0 and v = 0.3. The stresses on the rays will have then

the form
A(1)_ A(2)_

= C R +C 2R + higher order terms.

S (cr,, 0.3, R2; 0rR( - A"'
))

- -,i' . __ __ __ __ __ _
0 /,O.3,R0.3, R4)

10 (Cr, 0 .., R21, 0,Rs

,o . '-' .A!, oO.,2)I 0 ,Y.. . , 0 R4

---- -4 -

5 00 oo/o54450.90851
03 "6J2 55 178521 -6 -3R

0. R2 ),8( 
0.3 , R4)

0 ( , .,0.3,R2, R. 1. - 5

0.5 1.0 1.5 2.0

Fig.4.5. The behavior of stresses on the rays.

and

RA(1) C +CR (A(2) (1) +higher order terms.=1+2

Hence in the scale -A x R the behavior is linear for small

19



R. C and C2 relate to the need to compute two stress singular functions.

Fig. 4.5 ab depict the stresses on different rays. The Fig. 4.Sab show well

also the scales where the large stresses will appear (which is of the order of

1/100 of the thickness). We also see that the value of P does not signifi-

ntly influence the behavior of the solution. Nevertheless this is not always

the case as we will see in the next example.

The second problem (which was suggested by K.J. Bathe, (see also [9]) is

depicted in Fig. 4.6.

CLA.MPED
SY M.%M ET RY -0.0 1 / Y

CONDITION

T,z ( 1 z/d ) H 0.c0

Fig. 4. 6 The Bathe's problem

The boundary conditions are shown in the figure. When nothing is explicitly

stated then the associated tractions are zero. Let us consider now the

behavior of the solutions at the edge I-A: for v = 0.0 and u = 0.3.

The values of the constants A[ I are the same as in the previous example.

Fig. 4.7 shows now the stress or at the edge I-A. We see here drastic
x

difference between the stress behavior for LP = 0o0 and u = 0.3. The

standard finite element analysis will lead to the conclusion that o is

bounded on the edge I-A for u = 0.3 while for v = 0.0 is large. This

conclusion Is of course completely wrong. Let us mention that the strength of

material solution predicts a- = -280 for x = -d and z = 0. This value
x

20



is approximately achieved for v = 0.0 for any y (the problem here is

400

-350

V 0

-300

-250

200

-150. .

-100 '

v 0.31

-50 ----

010. 0

10-5 10-4  
i0 10-2 10.-1 i0

-/d ------

Fig.4.7 The stress ( on I-A for v = 0.0 and v = 0.3
xa

y-independent). For v = 0.3, it is approximately achieved for y> 7d

We see that for a reliable conclusion about the stresses in the neighborhood

of the corners and edges the computation of the stress intensity factor is

essential and any program should always have to be able to provide them

(STRIPE provides them). For more about the problem of reliable computations

in solid mechanics and detailed analysis of Bathe problem and engineering we

refer to [1].

5. The plate problem

The plate (and shell) problem is a basic problem in engineering. As the

basic mathematical problem we will understand the three dimensional problem

of elasticity on the thin domain

Analysis of the problems of this section has been made by programe STRIPE by
Dr.B. Andersson. For more see also (1).
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= {x,y,zl(x,y)e w, IzI <d/2L.

We will assume isotropic homogeneous material.

5.1 The problem of the derivation of the simplified formulation.

There are very many formulations of the plate problems. For the survey

see [201 (23]. The major simplified formulations are the Kirchhoff [K] and

Reissner-Mindlin (RM) formulations. Many results describe the asymptotic

behavior of the solution of 3 dimensional (basic) formulation as d--40.

These results show that (for example in the energy norm) the 3D and Reissner-

Mindlin solutions converge to the Kirchhoff solution as d--O, see eg.

[12), [19]. For a detailed study of the asymptotic behavior of Reissner-

Mindlin problem we refer to [2].

Further there are generalized models based on the projection in the

energy on the space of functions of the form (Kantorovich method)

Ek(5.1) U(x,y,z) = k(X,y)zk

k=O

V(x,y,z) = k(X,Y)zk

k=O
mk

W(x,y,z) = E gk(X.Y)z

k=O

In the case v = 0, the case n - I with (0 
= @0 =0 and m = 0 leads

to RM model. For v>0, n = 1, m = 2, @0 = t0 = = 0 leads to RM model

with singular perturbations. Usually m = n+1 Iis taken, which guarantees

the proper asymptotic rate of convergence. The model based (5.1) will be

called n-m model. In general n and m can be different in different parts

of w. For n,m--4m the solution of (n-m) model converges to 3 dimensional

solution (in the energy norm).
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The form (S. 1) leads to a hierarchic family of models. It depends on

particu-.r choice of the function in z. In (5.1) polynomials have been

used. This choice is optimal in an asymptotic way when d--4O (see e.g.

[12], [26]). Other optimal choices can be considered too [24].

The error of the various models have to be judged in the relation to

the 3D solution and which data are of interest.

5.2 The problem of the rhombic simply supported plate.

Let us consider the plate shown in Fig.5.1. The simple support can be

formulated as

a) hard simple support

b) soft simple support

S1.1.0a/

Fig. 5.1 The rhombic plate

In the case a) we assume on the lateral sides w = 0 and ut = 0 where by

ut we denote the displacement in the directions of the tangent to the boundary

of w (and hence T t*0), u Is free (i.e. T 0).

In the case b) the only constraint on the lateral side is w = 0 (and hence

Tn = Tt = 0). The K-model cannot distinguish between these two supports.

Few problems now appear

I) How much do the solutions for the two models of support differ?

23



ii) Which support does the K-model describe?

iii) How accurate (with respect to the 3D model) are the K and RM models?

Answers to these questions depend strongly on how we measure the error. It is

well known that the major difference between K and RM model is in the

boundary layer. For a detailed analysis in the case when the boundary of W

is smooth we refer to [21.

If we take the energy norm measure of the error and the load uniform on

the upper side of the rhombic plate the relative error in % for the K-model,

and the m = n = 2 model (which leads to the slightly smaller error the RM

model) and for the soft simple support is given in Table 5.1 (3D solution is

taken as exact).

Table 5.1 The relative energy norm error of K and m = m = 2 model for
soft simple support in %

u = 0.0 =0.3

d = 0.1 d = 0.01 d = 0.1 d =0.01

a
K (2,2) K (2,2) K (2.2) K (2,2)

900 39.56 12.57 11.87 3.50 34.52 11.18 9.88 2.94

80 °  39.91 12.59 12.23 3.57

60°  42.24 12.72 15.46 4.14

40 45.43 13.60 20.50 4.24

30' 48.27 15.41 22.66 4.34 44.68 15.03 18.91 3.68

Table 5.2 shows for a = 90 and u = 0 the error for the hard support (the

3D solution with hard support is taken as exact). The error of the 3D solu-

tion with the hard support with respect to the soft support of 3D formulation

Is 34.7X for d = 0 1 and 11.7% for d = 0.01 For more see [19]-
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Table 5.2 The relative enery norm error for the K and (2.2) model
for hard support in %.

Model d = 0.1 d = 0.01

K 20.31 2.03

(2.2) 8.22 0.68

The difference between models eg. K, RM, n-m and 3D model is largest in

the boundary layer. It can be in fact very large.

To illustrate this, we consider the square plate (a = 90, u = 0.0). Let

Qxz and Qyz be the shear forces on the line x = 0.5, 0 <y< 0.5 computed

from the 3 dimensional solution for d = 0.01 and soft support. They are

shown in Fig.5.2ab. Realizing that the K-model leads to Q = 0, we see that

K-model is unreliable for these data of interest.

Qyz0 0
-2 0 1- 1.0 I I

x, '0.456- '

-40 
Q456

0
_0,, , ___-2.0-

-0--4.0-8.0

.1-10.0_ ___ -8.86 -6.0 - _ _ __

-8.0 - .86
-140, 1 -0 0 0.1 0.2 0.3 0.4 0.5-1  0t . -.15.36

0 0.1 0.2 0.3 0.4 0.5
0.481

Fig.5.2 The shear force Qxz and Qyz at x=0.5 and O<y<0.0S

The K-model approximates relatively well the hard support but not the

soft one. In the larger distance from the boundary, the K-model is usually

usable also for the soft support. Although the K-model approximates the hard

support the usual approach is to modify the reaction Qxz by the derivative of

the twist moment to get the soft support reaction. This leads to a reasonably
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good approximation of Q xz In Fig.5.3 Qxz for soft and hard support with

twist moment adjustment is shown. Nevertheless no adjustment of K-model could

give reasonable values of Qz"

Z X - SOFT SUPPORT 7

0.4 /

QZX aSU fHARD SUPPORT-~

02

0 0.1 0.2 0.3 0.4 0.5

5.3 The reaction Qxz'

There is a significant theoretical difference between hard and soft

sample support.

In [6] we have analyzed the behavior of the solutions on a regular n-eck

polygons wo inscribed In the unit circle. We have shown that for hard

simple support the solution in w converge to a solution on the circle Sn

but which paradoxically is not the solution on S for the hard simple

support. This happens for K, RM and 3D model. In contrast, in the case of

the soft support, such paradox does not occur. This shows that the

mathematical problem of the hard support has a property which we would not

expect In "reality" and hence an increased precaution has to be given when

hard support model is used.

5.2 The problem of the solution singularity of the plate models.

Let us once more consider the square plate (a = 900), d = 0.01, u = 0.3

such that the sides 0.5<x<0.5, y = ±0.5 are clamped (u,v,w = 0) and

other two sides are free. Then in the neighborhood of the vertices the

solution is singular. In [111, [27] the singular behavior of the RM solution
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is analyzed. This analysis shows that RM solution has two different

characters of the singularities. Denote by (rO) the polar coordinates with

center in A = (0.5,0.5). Then for r << d the solution for example the

stresses or moments have the form

M x = o- = C r A RM R M ( 0)Hx x

while for r = d, the singularity is as for the Kirchhoff model

o-x - CrAKK (e)

Between these two areas there is a transition domain. The exponents A. ,

A satisfy some transcendental equations. In our casex

Am = - 0.241

AK = + 0.0686 +i0.438

(i.e. the stress of K-solution is oscillating). In Fig. 5.4 we show the

stress rx at the diagonal of the plate in log - log scale. We see clearly

that both types of singularities occur. Other stresses show similar behavior.

x Stress a,

2x10 3  
- Asymptotic Kirchhoff~Stnguiarity, X - 0.068

Ix0O
3  

+ 1 0 . .. 04318

8X10 
2

6x10
4 x 10

2  
Reissner Mindlin

2x102 nur ' "° 1

Retaner-Mindlin II Transition 11 Kirchhoff
2

8 
I  

.. . .. ..

10"1 10-4 I 0 10.2 10 '

Fig. 5.4 Stress o of the RM model.x

Finally we can compute the character of the moments computed from the 3

dimensional solution. Here we can show that
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H xzCr A 3D~ Ce)Mx caD3D(8

and in our case

A3D = -0.289

We see that the corner behavior is different for these 3 models. This

difference strongly depends on the geometry of the plate and boundary

conditions. For more we refer to [8].

6. The problem of nonlinear elasticity

The nonlinear formulation in the theory of elasticity stems from

a) nonlinear geometry as large displacements, stresses, etc.

b) nonlinear constitutive law.

Here we will address some questions related to the elasticity assuming

static behavior where effects of velocity etc. can be neglected. In one

dimensional case, given the strain c(t) -a< t <w the constitutive law

leads to the stress response o(t)

(6.1) o- = Ac

where A is an operator mapping the strains into the space of stresses.

In the 3 dimensional case, c and T are the strain and stress tensors,

respectively.

Usually the constitutive law in 2 and 3 dimensions is derived from the

one dimensional law by applying various principles as Mises, Tresca,

Huber-Hencky, etc. In one dimension many laws were proposed, see e.g. [281.

The basic laws are kinematic, isotropic hardening and others. Recently the

formulation by Chaboche (13] has become popular.

Mathematically it Is important that the constitutive law is such that it

satisfies conditions which guarantee the desirable properties of the mathe-
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matical problem of elasticity where it is used. It is of course also

important that there is not a large difference between observed and predicted

response (based on the constitutive law used).

6.1 Experimental results

Results of an extensive one dimensional, experimental analysis with the

aluminum alloy 5454 in the H32 condition are reported in [18). This alloy is

produced (under the same commercial mark) by different manufacturers and is

widely used in engineering.

The analysis in [18] is based on the fact that in engineering the

material is taken from the warehouse and at best the experiments for selection

of the proper constitutive law can be made on samples only (statistical

approach). Hence 84 samples have been taken and analyzed. Among others, the

main questions were related to

a) reproducibility of the response

b) selection of the constitutive law.

Two classes of the strain were considered

I) the cyclic periodic strain (which is usually used in material

science).

ii) random strain which is more realistic in applications.

The main results can be broadly characterized as follows

a) The reproducibility factor QR for the random strain is of order

zIO-15% where

maxlA(t) -B(t)I
tQR -maxIAMt + BMt T
t 2

Here A(t) and B(t) is the stress response of two different sample to the

same random strain. For cyclic load the factor Qc is of order 7-10%.
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b) For every sample and particular constitutive law mostly used in

practice (as Chaboche, kinematic, Mroz, etc.) the constants for the best fit

were computed. Then the average value of these (84 samples) were computed and

using these constants the constitutive law the factors CR (resp. C c ) were

Rk canalogous to QR(resp Qc3 i.e. we define

maxlA(t) -B(t)l
tC R =

maxIA(t) + BW I

t 2

Here A(t) is the response for a sample and B(t) is the predicted response

based on the average constants. For the best law (one of them is Chaboche we

get CR = 22-25% and Cc  16-18%.

For the best fit of one sample we get CR z 8%.

If the set of averaging is small we can get CR > 30%.

For some laws (in standard use in FE codes), CR >40 -50%.

In the Table 6.1 we show the 1'11L" 0.{11 L2 norm (in psi) and relative error.

IIA B11II -B1 1 A-B11 LOO- 11] A-B11 L2

I A-Bo LIA-BIIL 2  II(A-B)/2U L2 II(A-B)/211 L2

fd fq 5322 2334 14.4% 12.9%

fd Chabache 8346 2654 22.0% 13.5%

fd Kinematic 11850 3475 32.8% 17.6%

(fd, fq is the label of the sample, Chaboche and Kinematic means response

obtained by the Chaboche resp. kinematic law). We mention that for

computational purpose, the norm 11'L Is essential (and not 11.L2

As an Illustration we show In Fig. 6.1, 6.2, 6.3, the value for A-B (two
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samples) and A-B for character and kinematic law using average constants, for

the random strain.

Fig.6.1 The difference between two samples

I Iq

I'M

Fig.6.2 The difference between sample and Chabache law
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Flg.6.3 The difference between sample and kinematic law.

[18] analyzes only the one dimensional problem. It is possible to expect

that in 2 resp. 3 dimensional setting the factors will be larger.

The analysis made in [18] indicates

a) It is necessary to analyze the reliability of constitutive laws

derived from statistical sampling.

b) It Is necessary to analyze random and not cyclic strains.

c) It Is highly desirable to develop a mathematical theory for determin-

ing the constitutive law based on the (infinitely dimensional) identification

problems and to develop a strategies for optimal selections of strains for

experiments. This Is especially important for 2 and 3 dimensional settings.

d) It seems that the usual elasticity formulation and computation based

on the "average" constitutive law cannot give reliable results and other

approaches such as bracketting have to be developed, see also here [10].



6.2 Mathematical formulation of Chaboche law.

We have seen in the Section 6.1 that the Chaboche law is one of the

laws which fits best the data for the single sample. Therefore we will

discuss it here in more detail.

Although in [13] the law is formulated in an incremental way related to

mechanical interpretation, it can be cast into a system of ODE for the stress

and two (internal) parameter functions, (o(t), X(t), R(t)) for given strain
*dc

c(t). In what follows we denote c(t) =L etc. The Chaboche law is

characterized by 6 constants.

We have

= E , o(O) = x(O) = R(O) = 0

= 0, Ch(O) = , (O1 =-C

(6.2) R=0

£h =0

t =0

for all t e@, where

= t e~(t) <Ct) < h(t), or c(t) = c h(t)

o

and c O or ct(t) = eC(t) and 2:0}

(t) = E[c(a-x(t)) + b(Q-R(t))] (t)c(a-X(t)) +b(Q-R(t)) + E c

(6.3) Etc(a-x(t)) e(t)

.t c(a-X(t)) + b(Q-R(t)) +E

m= Eb(Q-R(t)) e(t)
c(a-X(t)) + b(Q-R(t)) +E

h =

A

3E



for all te P where

P

P+ =tIc>O and c h

and

(6.4) a(t) = Etc(a-x(t)) + b(Q-R(t))
c(a+X(t)) + b(Q-R(t)) + E

Am = tb(Q-R(t))
c(a+X(t)) + b(Q-R(t)) +E

= - R
h E

for all t EP_, where

P_={t{ <O and c = c }

Chaboche model is characterized by 6 constants with a physical interpretation.

a: Kinematic coefficient

c: Kinematic exponent

Q: isotropic exponent

b: Isotropic exponent

g: yield strain

E: elastic modulus

The Chaboche law as formulated can be generalized into 2D and 3D formu-

lations. Nevertheless when this is used in the nonlinear elasticity equation

problem, some desirable mathematical properties of the problems (as for

example, the existence of the solution) are not quaranteed. Hence another

formulation which approximate well the Chaboche law and leads to the desirable

properties of the mathematical formulation should be used.
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6.3 A proper mathematical formulation of the constitutive law.

Let us outline now here principles and family of constitutive laws

(called gauge method) which guarantee good properties of the mathematical

problems based on them. There are two basic (sufficient) conditions for it.

a) Existence and convexity of the yield surface

b) the normality condition

(These conditions are related to the Druckers postulates).

Let aE R m be the set of internal parameters, ac AcR ,m A being a

convex set in Rm. Set further oEI 3 (for a two dimensional problem).

Now we will formulate the law with the help of the yield function. To

this end let F(o,a), F: R 3xA-_R be given so that

(6.8a) F is convex and C1

(6.8b) F(0,O) = 0

(6.8c) There exist constants 2, r such that O< y< IS FII Ft <r

uniformly on the set {(a,)IF(oa) = z } for some z0 *0 0

Then

(6.9) Dc if tE

ea=O

0T

D (S F) TD
(6.10) = - T( T 0' T(1 F) F) ( (ST F)

=- ((S F) T 
- (S F))-I((S F)T)6 F if tel

a a 0' 0

where

g = {tIF(o-,)< z0 or

F(a, a) = z0 and (S F) o0}
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= {tIF(oc) =z 0  and (6T - '

The Chaboche model could be cast approximately in the above frame using

F(o-,otig) = [max(FI(o-, .1), F2 (o-,ct )]

where

(6.1Oa) Fl (o-,c') = a1 (a-a1 )2 +a2(a-1) +a 3(3-1 )2+a40-1 + (°-c'I) + 1

(6. lob) F C"r. 3) = b ( - )2 +b (O-Ot ) + b3 (- )2+b4(13- 2 -- 0'2) + 2
2 1 2 2 2 3 1 4 2 (

and [ ] the smoothing the operator in the neighborhood of the manifold

F (or, ) = F 2( , ,).

Fig. 6.4a shows the relation between c and o- for cyclic (sinusoidal)

strain with 50 reversals (25 periods) for the constant computed out of the

experimental data (averages of Chaboche constants).

/ I

! E

SL 3LV S

r ,

Flg.6.4 The relation between the strain c and the stress for the law based
on (6. lOa,b).
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Fig. 6.4b shows the results where, for the constant, we have taken the mean

minus standard deviation (let us mention that the correlation for these

coefficients (see [18]) are of order 0.2). Fig. 6.4c shows the results when

computed from the Chaboche law (see section 6.2) and Fig.6.4d shows the

experimental results for one sample.

We see that the results from the original Chaboche law are well

approximated. In all these data we have assumed that the initial data which

depend on past history have been known. In reality they are not known which

further increases the uncertainties in the available information, The

derivation of 2 and 3 dimensional constitutive law leads to still more

uncertainties because not enough experiments could be made. In [10] the 2

dimensional constitutive law was derived as the limit of the frame made out of

the bars, analogous Cauchy's derivation of linear elasticity.

We have seen that the computation of the problem of elasticity on the

assumption of the knowledge of constitutive law without respecting the

uncertainties leads to unreliable results.

7. A pos~eriori error analysis of the model.

It is essential to make a posteriori analysis of the error of the

solution of the simpliefled problem when only the data from this simplified

model are used. This can often be made by two sided energy estimates. For

details see e.g. [17].

7.1. Estimate of the error of geometry idealization.

Consider the problem on 02 shown in FIg. 7,1

r
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5 5

2.0 0

Fig. 7.1. Scheme of the problem with perturbed ,boundary.

Let the basic mathematical problem be the linear elasticity on 02 andr

the simplified problem is the problem on Q 0 using E = 1, v = 0.3 (and

r = 0). Then by finite element solution we get two stress intensity factors

2 2
(see Section 4) c, = 0.2157 10 , c2 = 0.5929 10 . Then the estimate using

cl, c2 (and the form of the singular functions) allows to compute the upper

estimate in the energy norm on O of the difference between the solutions on

Qr and Q 0 (see 1171). Table 7.1 gives the results together with the true

error obtained by th-, solution on fr .r

Table 7. 1 The estimate and true error of the geometry Ideal

r Estimate True error

0.1 19.0% 13.2%

0.01 3,5% 3.0%

We see good effectiveness of the estimate.

7.2 Estimates of the linearization

Let us consider once more the problem shown on Fig.7.1 with r = 0. If

the simplified problem will be understood as the linear problem the strains

and stresses are infinite (see Section 4). If we would consider as the basic
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problem the nonlinear problem, the nonlinearity will occur in the neighborhood

of the corner. We will assume the Hencky model of the nonlinear elasticity

with the governing function

< for 0:< 5 _0

j () 3<- (+- ((-).0 for < >C 0

with XE O - 1 ).

Functions () is the function describing the nonlinearity of the material.

6
Let us consider the problem depicted in Fig.7.1 with E = 10 , V = 0.3.

Table 7.2 shows the upper estimate of the relative error mentioned in the

energy norm for various values of ,,O.% For more details we refer to [171.

<0 = 0.01 <0 = 0.001

Estimate of Estimate of

relative 1 relative
error error

0.1 0.501 2.76 10-4 % 0.9 0.8 2.05 10-5 .

0.1 0.5001 2.79 10 -4 % 0.9 0.5 4.06 10-5 %

0.1 0.50001 2.79 10-4 % 0.9 0.02 5.36 10-5 %

0.01 0.501 9.56 10-4% 0.5 0.8 1.19 10-4 %

0.01 0.5001 9.62 10-4 % 0.5 0.5 2.55 10-4%

0.01 0.50001 9.63 10-4 % 0.5 0.2 3.89 10-4 %

0001 0.501 3.03 10-3 % 0.3 0.3 1.84 10-4 %

0.001 0.5001 3.07 10-3 % 0.3 0.5 4.32 10-4 %

0.001 0. 50001 3.08 10-3 %
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8. Conclusions

We have discussed various aspects of reliability without trying to define

more precisely what does it mean. We have seen that the aim is to get desired

data with an assessment of their accuracy. More precisely we are aiming to

get the quantitative bracketts in which the "true" results are. These

bracketts then express the uncertainty of the results caused by uncertainties

in the input data, the (simplified) formulation, the discretization etc.

We can now roughly define the reliability of engineering computations in

the relation to reality.

The computational results furnished with the bracketts are physically

reliable if the physically observed results are in the provided bracketts.

Analogously, (more precisely) we can define the reliability of the compu-

tational results in the relation of mathematical analysis.

The computational results furnished with the bracketts are mathematically

reliable if the exact data of the basic mathematical problems are in the

provided bracketts.

We have seen that the reliability is related to the data of interest and

the definitions what is meant by accuracy (e.g. particular norms) etc.

We have also seen that the mathematical formulation has to be closely

related to the engineering analysis and experimentation. Without it, the

"physical" reliability is impossible to expect.

The mathematical reliability, i.e. the comparison of the obtained results

with the exact data stemming from the basic mathematical problem is always (at

least in principle) possible. This comparison and its bracketting is then the

main goal of the (mathematical) computational analysis.

The reliability of the computational analyses has many features and

bring out many unsolved problems. Nevertheless there are already today many

40



ways to get at least partial quantitative insight into reliability of computed

results.
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